Y. Xu, J. Mao, Y. Du, T. Lozano-Perez, L.P. Kaelbling, and D. Hsu. “Set It Up!”: Functional Object Arrangement with Compositional Generative Models. In Proc. Robotics: Science & Systems, 2024.
BibTeX  PDF

S. Cai, A. Ram, Z. Gou, M.A.W. Shaikh, Y.A. Chen, Y. Wan, K. Hara, S. Zhao and D. Hsu. Navigating Real-World Challenges: A Quadruped Robot Guiding System for Visually Impaired People in Diverse Environments. In Proc. ACM Conf. on Human Factors in Computing Systems, 2024.
BibTeX  PDF

J. Loo and D. Hsu. Scene Action Maps: Behavioural Maps for Navigation without Metric Information. In In Proc. IEEE Int. Conf. on Robotics & Automation, 2024.
BibTeX  PDF

Z. Zhao, W.S. Lee, and D. Hsu. Large Language Models as commonsense knowledge for large-scale task planning. In Advances in Neural Information Processing Systems, 2023.
BibTeX  PDF

P. Tran, H. Wu, C. Yu, P. Cai, S. Zheng, and D. Hsu. What truly matters in trajectory Prediction for autonomous driving? In Advances in Neural Information Processing Systems, 2023.
BibTeX  PDF

Z. Zhao, W.S. Lee, and D. Hsu. Differentiable parsing and visual grounding of natural language instructions for object placement. In Proc. IEEE Int. Conf. on Robotics & Automation, 2023.
BibTeX  PDF

P. Cai and D. Hsu. Closing the planning-learning loop with application to autonomous driving. IEEE Trans. on Robotics, 39(2):998–1011, 2023.
BibTeX  PDF

M. Lauri, D. Hsu, and J. Pajarinen. Partially observable Markov decision processes in robotics: A survey. IEEE Trans. on Robotics, 39(1):21-40, 2023.
BibTeX  PDF

S. Chen, Y. Xu, C. Yu, L. Li, X. Ma, Z. Xu, and D. Hsu. DaXBench: Benchmarking deformable object manipulation with differentiable physics. In Proc. Int. Conf. on Learning Representations, 2023.
BibTeX  PDF  Code

M. H. Danesh, P. Cai, and D. Hsu. LEADER: Learning attention over driving behaviors for planning under uncertainty. In Proc. Conference on Robot Learning, 2022.
BibTeX  PDF

C. Yu, Y. Xu, L. Lin, and D. Hsu. COACH: Cooperative robot teaching. In Proc. Conference on Robot Learning, 2022.
BibTeX  PDF

Y. Xu, W. Gao, and D. Hsu. Receding horizon inverse reinforcement learning. In Advances in Neural Information Processing Systems, 2022.
BibTeX  PDF

Y. Luo, P. Cai, Y. Lee, , and D. Hsu. GAMMA: A general agent motion model for autonomous driving. IEEE Robotics & Automation Letters, 7(2):3499–3506, 2022.
BibTeX  PDF

X. Ma, D. Hsu, and W.S. Lee. Learning latent graph dynamics for visual manipulation of deformable objects. In Proc. IEEE Int. Conf. on Robotics & Automation, 2022.
BibTeX  PDF

B. Ai, W. Gao, Vinay, and D. Hsu. Deep visual navigation under partial observability. In Proc. IEEE Int. Conf. on Robotics & Automation, 2022.
BibTeX  PDF

Y.F. Luo, M. Meghjani, Q.H. Ho, D. Rus, and D. Hsu. Interactive planning for autonomous urban driving in adversarial scenarios. In Proc. IEEE Int. Conf. on Robotics & Automation, 2021.
BibTeX PDF

P.P. Cai, Y.F. Luo, D. Hsu, and W.S. Lee. HyP-DESPOT: A hybrid parallel algorithm for online planning under uncertainty. Int. J. Robotics Research, 40(2–3), 2021.
BibTeX  PDF

H. Zhang, S. Bai, X. Lan, D. Hsu, and N. Zheng. Hindsight trust region policy optimization. In Proc. Int. Jnt. Conf. on Artificial Intelligence, 2021.
BibTeX  PDF

P. Karkus, S. Cai, and D. Hsu. Differentiable SLAM-net: Learning particle SLAM for visual navigation. In Proc. IEEE Conf. on Computer Vision & Pattern Recognition, 2021.
BibTeX  PDF

Y. Lee, P. Cai, and D. Hsu. MAGIC: Learning macro-actions for online POMDP planning.  In Proc. Robotics: Science & Systems, 2021.
BibTeX  PDF  Video

H. Zhang, Y. Lu, C. Yu, D. Hsu, X. Lan, and N. Zheng. INVIGORATE: Interactive visual grounding and grasping in clutter.  In Proc. Robotics: Science & Systems, 2021.
BibTeX  PDF  Video

S. Chen, X. Ma, Y. Lu, and D. Hsu. Ab initio particle-based object manipulation.  In Proc. Robotics: Science & Systems, 2021.
BibTeX  PDF  Video

H. Soh, Y. Xie, M. Chen, and D. Hsu. Multi-task trust transfer for human-robot interaction. Int. J. Robotics Research, 39(2–3):233–249, 2020.
BibTeX  PDF

M. Shridhar, D. Mittal, and D. Hsu. Interactive visual grounding of referring expressions for human-robot interaction. Int. J. Robotics Research, 39(2–3):217–232, 2020.
BibTeX  PDF

X. Ma, P. Karkus, D. Hsu, W.S. Lee, and N. Ye. Discriminative particle filter reinforcement learning for complex partial observations. In Proc. Int. Conf. on Learning Representations, 2020.
BibTeX  PDF

X. Ma, P. Karkus, D. Hsu, and W.S. Lee. Particle filter recurrent neural networks. In Proc. AAAI Conf. on Artificial Intelligence, 2020.
BibTeX  PDF

M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa. Trust-aware decision making for human-robot collaboration: Model learning and planning. ACM Trans. on Human-Robot Interaction, 9(2):1–23, 2020.
BibTeX  PDF

P. Cai, Y. Lee, Y. Luo, and D. Hsu. SUMMIT: A simulator for urban driving in massive mixed traffic. In Proc. IEEE Int. Conf. on Robotics & Automation, 2020.
BibTeX  PDF

Y. Xie, I.P. Bodala, D.C. Ong, D. Hsu, and H. Soh. Robot capability and intention in trust-based decisions across tasks. In Proc. ACM/IEEE Int. Conf. on Human-Robot Interaction, 2019.
BibTeX  PDF

M. Meghjani, Y.F. Luo, Q.H. Ho, P. Cai, S. Verma, D. Rus, and D. Hsu. Context and intention aware planning for urban driving. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2019.
BibTeX  PDF

Y.F. Luo, H.Y. Bai, D. Hsu, and W.S. Lee. Importance sampling for online planning under uncertainty. Int. J. Robotics Research, 38(2–3):162–181, 2019.
BibTeX  PDF

R. Pinsler, P. Karkus, A. Kupcsik, D. Hsu, and W.S. Lee. Factored contextual policy search with bayesian optimization. In Proc. IEEE Int. Conf. on Robotics & Automation, 2019.
BibTeX  PDF

N.P. Garg, D. Hsu, and W.S. Lee. Learning to grasp under uncertainty using POMDPs. In Proc. IEEE Int. Conf. on Robotics & Automation, 2019.
BibTeX  PDF

P. Karkus, X. Ma, D. Hsu, L.P. Kaelbling, W.S. Lee, and T. Lozano-Perez. Differentiable algorithm networks for composable robot learning. In Proc. Robotics: Science & Systems, 2019.
BibTeX  PDF

N.P. Garg, D. Hsu, and W.S. Lee. DESPOT-α: Online POMDP planning with large state and observation spaces. In Proc. Robotics: Science & Systems, 2019.
BibTeX  PDF

P.P. Cai, Y.F. Luo, A. Saxena, D. Hsu, and W.S. Lee. LeTS-Drive: Driving in a crowd by learning from tree search. In Proc. Robotics: Science & Systems, 2019.
BibTeX  PDF

P. Karkus, D. Hsu, and W.S. Lee. Particle filter networks with application to visual localization. In Proc. Conference on Robot Learning. 2018.
BibTeX  PDF

Y.F. Luo, P. Cai, A. Bera, D. Hsu, W.S. Lee, and D. Manocha. PORCA: Modeling and planning for autonomous driving among many pedestrians. IEEE Robotics & Automation Letters, 3(4):3418–3425, 2018.
BibTeX  PDF

M. Chen, D. Hsu, and W.S. Lee. Guided exploration of human intentions for human-robot interaction. In Algorithmic Foundations of Robotics XIII—Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR). 2018.
BibTeX  PDF

H. Soh, P. Shu, M. Chen, and D. Hsu. The transfer of human trust in robot capabilities across tasksIn Proc. Robotics: Science & Systems, 2018.
BibTeX  PDF

J.K. Li, D. Hsu, and W.S. Lee. Push-Net: Deep planar pushing for objects with unknown physical propertiesIn Proc. Robotics: Science & Systems, 2018.
BibTeX  PDF

P.P. Cai, Y.F. Luo, D. Hsu, and W.S. Lee. HyP-DESPOT: A hybrid parallel algorithm for online planning under uncertaintyIn Proc. Robotics: Science & Systems, 2018.
BibTeX  PDF

M. Shridhar and D. Hsu. Interactive visual grounding of referring expressions for human-robot interactionIn Proc. Robotics: Science & Systems, 2018.
BibTeX  PDF

Z. Lan, D. Hsu, and G. Lee. Solving the perspective-2-point problem for flying-camera photo compositionIn Proc. IEEE Conf. on Computer Vision & Pattern Recognition, 2018.
BibTeX  PDF

M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa. Planning with trust for human-robot collaborationIn Proc. ACM/IEEE Int. Conf. on Human-Robot Interaction, 2018.
BibTeX  PDF

P. Karkus, D. Hsu, and W. Lee. QMDP-Net: Deep learning for planning under partial observabilityIn Advances in Neural Information Processing Systems, 2017.
BibTeX  PDF

W. Gao, D. Hsu, W. Lee, S. Shen, and K. Subramanian. Intention-Net: Integrating planning and deep learning for goal-directed autonomous navigation. In S. Levine and V. V. and K. Goldberg, editors, Conference on Robot Learning, volume 78 of Proc. Machine Learning Research, pages 185–194. 2017.
BibTeX  PDF

S. Nikolaidis, D. Hsu, and S. Srinivasa. Human-robot mutual adaptation in collaborative tasks: Models and experiments. Int. J. Robotics Research, 36(5–7):618–634, 2017.
BibTeX  PDF

S. Nikolaidis, Y. Zhu, D. Hsu, and S. Srinivasa. Human-robot mutual adaptation in shared autonomy. In Proc. ACM/IEEE Int. Conf. on Human-Robot Interaction, 2017.
BibTeX  PDF

N. Ye, A. Somani, D. Hsu, and W. Lee. DESPOT: Online POMDP planning with regularization. J. Artificial Intelligence Research, 58:231–266, 2017.
BibTeX  PDF

P. Singh, M. Chen, L. Carlone, S. Karaman, E. Frazzoli, and D. Hsu. Supermodular mean squared error minimization for sensor scheduling in optimal kalman filtering. In Proc. American Control Conf., 2017.
BibTeX  PDF

Z. Lim, D. Hsu, and W. Lee. Shortest path under uncertainty: Exploration versus exploitation. In Proc. Conf. on Uncertainty in Artificial Intelligence, 2017.
BibTeX  PDF

Z. Lan, M. Shridhar, D. Hsu, and S. Zhao. XPose: Reinventing user interaction with flying cameras. In Proc. Robotics: Science & Systems, 2017.
BibTeX  PDF

Y.F. Luo, H.Y. Bai, D. Hsu, and W.S. Lee. Importance sampling for online planning under uncertainty. In Algorithmic Foundations of Robotics XII – Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR). 2016.
BibTeX  PDF

M. Koval, D. Hsu, N. Pollard, and S. Srinivasa. Configuration lattices for planar contact manipulation under uncertainty. In Algorithmic Foundations of Robotics XII – Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR). 2016.
BibTeX  PDF

S. Nikolaidis, A. Kuznetsov, D. Hsu, and S. Srinivasa. Formalizing human-robot mutual adaptation: A bounded memory model. In Proc. ACM/IEEE Int. Conf. on Human-Robot Interaction. 2016.
BibTeX  PDF

Z.W. Lim, D. Hsu, and W.S. Lee. Adaptive informative path planning in metric spacesInt. J. Robotics Research, 35(5):585-598, 2016.
BibTeX  PDF

J.K. Li, D. Hsu, and W.S. Lee. Act to see and see to act: POMDP planning for objects search in clutter. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2016.
BibTeX  PDF

M. Chen, E. Frazzoli, D. Hsu, and W.S. Lee. POMDP-Lite for robust planning under uncertainty. In Proc. IEEE Int. Conf. on Robotics & Automation, 2016.
BibTeX  PDF

H.Y. Bai, S.J. Cai, N. Ye, D. Hsu, and W.S. Lee. Intention-aware online POMDP planning for autonomous driving in a crowd. In Proc. IEEE Int. Conf. on Robotics & Automation, 2015.
BibTeX  PDF  Video

V. Sezer, T. Bandyopadhyay, D. Rus, E. Frazzoli, and D. Hsu. Towards autonomous navigation of unsignalized intersections under uncertainty of human driver intent. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2015.
BibTeX

Z.W. Lim, D. Hsu, and W.S. Lee. Adaptive stochastic optimization: from sets to paths. In Advances in Neural Information Processing Systems, 2015.
BibTeX  PDF

Z. Zhang, D. Hsu, W.S. Lee, Z.W. Lim, and A. Bai. PLEASE: Palm leaf search for POMDPs with large observation spaces. In Proc. Int. Conf. on Automated Planning & Scheduling, 2015.
BibTeX  PDF

A. Kupcsik, D. Hsu, and W.S. Lee. Learning dynamic robot-to-human object handover from human feedback. In Proc. Int. Symp. on Robotics Research, 2015.
BibTeX PDF

K. Wu, W.S. Lee, and D. Hsu. POMDP to the rescue: Boosting performance for Robocup rescue. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2015.
BibTeX PDF

G.M. Gyori, G. Venkatachalam, P.S. Thiagarajan, D. Hsu, and M.V. Clement. OpenComet: An automated tool for comet assay image analysisRedox Biology, 2(2):457–465, 2014.
BibTeX  PDF

X.X. Wang, Y. Wang, D. Hsu, and Y. Wang. Exploration in interactive personalized music recommendation: A reinforcement learning approachACM Trans. on Multimedia Computing, Communications & Applications, 11(1), 2014.
BibTeX PDF

Z.W. Lim, D. Hsu, and W.S. Lee. Adaptive informative path planning in metric spaces. In Algorithmic Foundations of Robotics XI—Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR). 2014.
BibTeX PDF

Z. Zhang, D. Hsu, and L.S. Lee. Covering number for efficient heuristic-based POMDP planning. In Proc. Int. Conf. on Machine Learning. 2014.
BibTeX PDF

H.Y. Bai, D. Hsu, and W.S. Lee. Integrated perception and planning in the continuous space: A POMDP approachInt. J. Robotics Research, 33(9):1288–1302, 2014.
BibTeX PDF

S.K. Palaniappan, B.M. Gyori, B. Liu, D. Hsu, and P.S. Thiagarajan. Statistical model checking based calibration and analysis of bio-pathway models. In Proc. Conf. on Computational Methods in Systems Biology, 2013.
BibTeX PDF

H.Y. Bai, D. Hsu, and W.S. Lee. Planning how to learn. In Proc. IEEE Int. Conf. on Robotics & Automation, 2013.
BibTeX PDF

P. Chaudhari, S. Karaman, D. Hsu, and E. Frazzoli. Sampling-based algorithms for continuous-time POMDPs. In Proc. American Control Conf., 2013.
BibTeX PDF

H.Y. Bai, D. Hsu, and W.S. Lee. Integrated perception and planning in the continuous space: A POMDP approach. In Proc. Robotics: Science and Systems, 2013.
BibTeX PDF (with supplementary material)

A. Somani, N. Ye, D. Hsu, and W.S. Lee. DESPOT: Online POMDP planning with regularization. In Advances in Neural Information Processing Systems (NIPS). 2013.
BibTeX PDF (with supplementary material)  Software  Video

B. Gipson, D. Hsu, L.E. Kavraki, and J.C. Latombe. Computational models of protein kinematics and dynamics: Beyond simulationAnnu. Rev. Anal. Chem, 5:273–291, 2012. DOI: 10.1146/annurev-anchem-062011-143024.
BibTeX PDF

Y. Wang, K.S. Won, D. Hsu, and W.S. Lee. Monte Carlo Bayesian reinforcement learning. In Proc. Int. Conf. on Machine Learning, 2012.
BibTeX PDF (with supplementary material)

T. Bandyopadhyay, K.S. Won, E. Frazzoli, D. Hsu, W.S. Lee, and D. Rus. Intention-aware motion planning. In Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR), 2012.
BibTeX PDF

B. Liu, J. Zhang, P.Y. Tan, D. Hsu, A.M. Blom, B. Leong, S. Sethi, B. Ho, J.L. Ding, and P.S. Thiagarajan. A computational and experimental study of the regulatory mechanisms of the complement systemPloS Computational Biology, 7(1), 2011.
BibTeX  PDF

B. Liu, D. Hsu, and P. S. Thiagarajan. Probabilistic approximations of ODEs-based bio-pathway dynamicsTheoretical Computer Science, 412(21):2188-2206, 2011.
BibTeX  PDF

G. Koh, D. Hsu, and P. S. Thiagarajan. Component-based construction of bio-pathway models: The parameter estimation problemTheoretical Computer Science, 412(26):2840–2853, 2011.
BibTeX  PDF

H.Y. Bai and D. Hsu and Mykel J. Kochenderfer and W.S. Lee. Unmanned aircraft collision avoidance using continuous-state POMDPs. In Proc. Robotics: Science and Systems, 2011.
BibTeX  PDF

T.H.D. Nguyen and D. Hsu and W.S. Lee and T.Y. Leong and L.P. Kaelbling and T. Lozano-Perez and A.H. Grant. CAPIR: Collaborative action planning with intention recognitionProc. AI and Interactive Digital Entertainment Conference, 2011.
BibTeX  PDF

H. Kurniawati and Y. Du and D. Hsu and W.S. Lee. Motion planning under uncertainty for robotic tasks with long time horizonsInt. J. Robotics Research, 30(3):308-323, 2011.
BibTeX  PDF

Z.W. Lim, D. Hsu, and W.S. Lee. Monte Carlo value iteration with macro-actions. In Advances in Neural Information Processing Systems (NIPS), 2011.
BibTeX  PDF  (with supplementary material)  Software

G. Koh, D. Hsu, and P.S. Thiagarajan. Incremental signaling pathway modeling by data integration. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), 2010.
BibTeX  PDF

T.-H. Chiang, D. Hsu, and J.C. Latombe. Markov dynamic models for long-timescale protein motionBioinformatics, 26(12):i269–i277, 2010. Special issue on Int. Conf. on Intelligent Systems for Molecular Biology (ISMB) 2010.
BibTeX  PDF

Y.Z. Du, D. Hsu, H. Kurniawati, W.S. Lee, S.C.W. Ong, and S.W. Png. A POMDP Approach to Robot Motion Planning under Uncertainty. In Int. Conf. on Automated Planning & Scheduling, Workshop on Solving Real-World POMDP Problems, 2010.
BibTeX  PDF

L.L. Ko, D. Hsu, W.S. Lee, and S.C.W. Ong. Structured parameter elicitation. In Proc. AAAI Conf. on Artificial Intelligence, 2010.
BibTeX  PDF

S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. Planning under Uncertainty for Robotic Tasks with Mixed ObservabilityInt. J. Robotics Research, 29(8):1053–1068, 2010.
BibTeX  PDF  Software

H.Y. Bai and D. Hsu and W.S. Lee and V.A. Ngo. Monte Carlo value iteration for continuous-state POMDPs. In D. Hsu et al., editors, Algorithmic Foundations of Robotics IX—Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR), 2010.
BibTeX  PDF  Software

B. Liu, P.S. Thiagarajan, and D. Hsu . Probabilistic approximations of signaling pathway dynamics. In Proc. Conf. on Computational Methods in Systems Biology, 2009.
BibTeX  PDF

B. Liu, P.S. Thiagarajan, and D. Hsu. Probabilistic approximations of bio-pathway dynamics. In ACM Int. Conf. on Computational Biology (RECOMB) Poster Book, 2009.
BibTeX  PDF

S.C.W. Ong, D. Hsu, W.S. Lee, and H. Kurniawati. Partially observable Markov decision process POMDP technologies for sign language based human-computer interaction. In Proc. Int. Conf. on Human-Computer Interaction, 2009.
BibTeX PDF

S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. POMDPs for robotic tasks with mixed observability. In Proc. Robotics: Science and Systems, 2009.
BibTeX  PDF  Software

H. Kurniawati, Y. Du, D. Hsu, and W.S. Lee. Motion planning under uncertainty for robotic tasks with long time horizons. In Proc. Int. Symp. on Robotics Research, 2009.
BibTeX PDF

T. Bandyopadhyay, N. Rong, Ang Jr., M.H., D. Hsu, and W.S. Lee. Motion planning for people tracking in uncertain and dynamic environments. In IEEE Int. Conf. on Robotics & Automation, Workshop on People Detection & Tracking, 2009.
BibTeX PDF

G. Koh, D. Hsu, and P.S. Thiagarajan. Composition of signaling pathway models and its application to parameter estimation. In ACM Int. Conf. on Computational Biology (RECOMB) Poster Book, 2008.
BibTeX  PDF

A. Nigham, L. Tucker-Kellogg, I. Mihalek, C. Verma, and D. Hsu. pFlexAna: Detecting conformational changes in remotely related proteinsNucleic Acids Res., 36:W246–W251, 2008. DOI: 10.1093/nar/gkn259.
BibTeX  PDF

A. Nigham and D. Hsu. Protein conformational flexibility analysis with noisy data. J. Computational Biology, 15(7):813–828, 2008.
BibTeX

D. Hsu, W.S. Lee, and N. Rong. What makes some POMDP problems easy to approximate?In Advances in Neural Information Processing Systems (NIPS), 2007.
BibTeX PDF

H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In Proc. Robotics: Science and Systems, 2008.
BibTeX PDF  Software

D. Hsu, W.S. Lee, and N. Rong. A point-based POMDP planner for target tracking. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2644–2650, 2008.
BibTeX PDF

T. Bandyopadhyay, D. Hsu, and Ang Jr., M.H.. Motion strategies for people tracking in cluttered dynamic environments. In Proc. Int. Symp. on Experimental Robotics, 2008.
BibTeX PDF

L.J. Guibas, D. Hsu, H. Kurniawati, and E. Rehman. Bounded uncertainty roadmaps for path planning. In Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR), 2008.
BibTeX PDF

G. Koh, L. Tucker-Kellogg, D. Hsu, and P.S. Thiagarajan. Globally consistent pathway parameter estimates through belief propagationIn Proc. Workshop on Algorithms in Bioinformatics (WABI), 2007.
BibTeX  PDF

A. Nigham and D. Hsu. Protein conformational flexibility analysis with noisy data. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), pp. 396–411, 2007.
BibTeX  PDF

T.-H. Chiang, M.S. Apaydin, D.L. Brutlag, D. Hsu, and J.C. Latombe. Using stochastic roadmap simulation to predict experimental quantities in protein folding kinetics: Folding rates and phi-valuesJ. Computational Biology, 14(5):578–593, 2007.
BibTeX PDF

D. Hsu, W.S. Lee, and N. Rong. Accelerating point-based POMDP algorithms through successive approximations of the optimal reachable space. Technical Report TRA4/07, National University of Singapore. School of Computing, 2007.
BibTeX  PDF

T. Bandyopadhyay, Ang Jr., M.H., and D. Hsu. Motion planning for 3-D target tracking among obstacles. In Proc. Int. Symp. on Robotics Research, 2007.
BibTeX PDF

X. Wu, D. Hsu, and A.K.H. Tung. Efficient constrained Delaunay triangulation for large spatial databases. Technical Report TRA1/06, National University of Singapore, School of Computing, 2006.
BibTeX  PDF

G. Koh, H.F.C. Teong, M.-V. Clément, D. Hsu, and P.S. Thiagarajan. A decompositional approach to parameter estimation in pathway modeling: A case study of the Akt and MAPK pathways and their crosstalkBioinformatics, 22(14):271–280, 2006. Special issue on Int. Conf. on Intelligent Systems for Molecular Biology (ISMB) 2006.
BibTeX  PDF

T.-H. Chiang, M.S. Apaydin, D.L. Brutlag, D. Hsu, and J.C. Latombe. Predicting experimental quantities in protein folding kinetics using stochastic roadmap simulation. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), pp. 410–424, Springer, 2006.
BibTeX  PDF

T. Bandyopadhyay, Y.P. Li, Ang Jr., M.H., and D. Hsu. A greedy strategy for tracking a locally predictable target among obstacles. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2342–2347, 2006.
BibTeX  PDF

H. Kurniawati and D. Hsu. Workspace-based connectivity oracle: An adaptive sampling strategy for PRM planning. In S. Akella and others, editors, Proc. Int. Workshop on the Algorithmic Foundations of Robotics (WAFR), Springer, 2006.
BibTeX  PDF

H.-L. Cheng, D. Hsu, J.-C. Latombe, and G. Sánchez-Ante. Multi-level free-space dilation for sampling narrow passages in PRM planning. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1255–1260, 2006.
BibTeX  PDF

D. Hsu, J.C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic roadmap planningInt. J. Robotics Research, 25(7):627–643, 2006.
BibTeX  PDF

H.H. González-Baños, D. Hsu, and J.C. Latombe. Motion planning: Recent developments. In S.S. Ge and F.L. Lewis, editors, Autonomous Mobile Robots: Sensing, Control, Decision-Making and Applications, CRC Press, 2006.
BibTeX  PDF

J. Yin, Y. Wang, and D. Hsu. Digital violin tutor: An integrated system for beginning violin learners. In Proc. ACM Multimedia, pp. 976–985, 2005.
BibTeX

Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. Reif. Narrow passage sampling for probabilistic roadmap plannersIEEE Trans. on Robotics, 21(6):1105–1115, 2005.
BibTeX  PDF

D. Hsu, G. Sánchez-Ante, and Z. Sun. Hybrid PRM sampling with a cost-sensitive adaptive strategy. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3885–3891, 2005.
BibTeX  PDF

D. Hsu, J.C. Latombe, and H. Kurniawati. On the probabilistic foundations of probabilistic roadmap planning. In Proc. Int. Symp. on Robotics Research, 2005.
BibTeX PDF

M. Erdmann, D. Hsu, M. Overmars, and F. van der Stappen, editors. Algorithmic Foundations of Robotics VI, Springer, 2005.
BibTeX

C. Xia, D. Hsu, and A.K.H. Tung. A fast filter for obstructed nearest neighbour queries. In Proc. British National Conferences on Databases, 2004.
BibTeX

T. Bandyopadhyay, Y.P. Li, Ang Jr., M.H., and D. Hsu. Stealth tracking of an unpredictable target among obstacles. In M. Erdmann and others, editors, Algorithmic Foundations of Robotics VI—Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 43–58, Springer, 2004.
BibTeX  PDF

J. Yin, A. Dhanik, D. Hsu, and Y. Wang. The creation of a music-driven digital violinist. In Proc. ACM Multimedia, pp. 476–479, 2004.
BibTeX PDF

H. Kurniawati and D. Hsu. Workspace importance sampling for probabilistic roadmap planning. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 1618–1623, 2004.
BibTeX  PDF

D. Hsu and Z. Sun. Adaptive hybrid sampling for probabilistic roadmap planningTechnical Report TRA5/04, National University of Singapore, School of Computing, 2004.
BibTeX  PDF

D. Hsu and Z. Sun. Adaptively combining multiple sampling strategies for probabilistic roadmap planning. In Proc. IEEE Conf. on Robotics, Automation, and Mechatronics, pp. 774–779, 2004.
BibTeX  PDF

M.S. Apaydin, D.L. Brutlag, C. Guestrin, D. Hsu, J.C. Latombe, and C. Varma. Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motionJ. Computational Biology, 10(3-4):247–281, 2003.
BibTeX PDF

D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 4420–4426, 2003.
BibTeX PDF

D. Brutlag, M.S. Apaydin, C. Guestrin, D. Hsu, C. Varma, A. Singh, and J.-C. Latombe. Using robotics to fold proteins and dock ligandsBioinformatics, 18:S74–S83, 2002.
BibTeX  PDF  HTML

R.-P. Berretty, D. Hsu, L. Kettner, A. Mascarenhas, M.R. Redinbo, and J. Snoeyink. Ligand binding to the pregnane X receptor by geometric matching of hydrogen bonding. In L. Florea and others, editors, Currents in Computational Molecular Biology, pp. 22–23, 2002. The booklet contains extended poster abstracts from RECOMB 2002.
BibTeX PDF

M.S. Apaydin, D.L. Brutlag, C. Guestrin, D. Hsu, and J.C. Latombe. Stochastic conformational roadmaps for computing ensemble properties of molecular motion. In J.-D. Boissonnat and others, editors, Algorithmic Foundations of Robotics V—Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 131–148, Springer, 2002.
BibTeX

M.S. Apaydin, D.L. Brutlag, C. Guestrin, D. Hsu, and J.C. Latombe. Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. In Proc. ACM Int. Conf. on Computational Biology (RECOMB), pp. 12–21, 2002.
BibTeX PDF

D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Randomized kinodynamic motion planning with moving obstaclesInt. J. Robotics Research, 21(3):233–255, 2002.
BibTeX PDF

J. Basch, L.J. Guibas, D. Hsu, and A.T. Nguyen. Disconnection proofs for motion planning. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1765–1772, 2001.
BibTeX PDF

L.J. Guibas, D. Hsu, and L. Zhang. A hierarchical method for real-time distance computation among moving convex bodiesComputational Geometry: Theory and Applications, 15(1-3):51–68, 2000.
BibTeX PDF

R. Kindel, D. Hsu, J.C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving obstacles. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 537–543, 2000.
BibTeX PDF

D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Control-based randomized motion planning for dynamic environments. In B.R. Donald and others, editors, Algorithmic and Computational Robotics: New Directions—Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 247–264, A. K. Peters, Wellesley, MA, 2000.
BibTeX PDF

D. Hsu. Randomized Single-query Motion Planning in Expansive Spaces. Ph.D. Thesis, Dept. of Computer Science, Stanford University, Stanford, CA, 2000.
BibTeX PDF

L.J. Guibas, D. Hsu, and L. Zhang. H-Walk: hierarchical distance computation for moving convex bodies. In Proc. ACM Symp. on Computational Geometry, pp. 265–273, 1999.
BibTeX  PDF

D. Hsu, J.C. Latombe, and S. Sorkin. Placing a robot manipulator amid obstacles for optimized execution. In Proc. IEEE Int. Symp. on Assembly & Task Planning, pp. 280–285, 1999.
BibTeX PDF

D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration spacesInt. J. Computational Geometry & Applications, 9(4-5):495–512, 1999.
BibTeX  PDF

D. Hsu, J.C. Latombe, R. Motwani, and L.E. Kavraki. Capturing the connectivity of high-dimensional geometric spaces by parallelizable random sampling techniques. In P.M. Pardalos and S. Rajasekaran, editors, Advances in randomized parallel computing, pp. 159–182, Kluwer Academic Publishers, Boston, MA, 1999.
BibTeX PDF

D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages with probabilistic roadmap planners. In P.K. Agarwal and others, editors, Robotics: The Algorithmic Perspective—Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR), pp. 141–154, A. K. Peters, Wellesley, MA, 1998.
BibTeX PDF

D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2719–2726, 1997.
BibTeX PDF

H. Alt, D. Hsu, and J. Snoeyink. Computing the largest inscribed isothetic rectangle. In Proc. Canadian Conf. on Computational Geometry, pp. 67–72, 1995.
BibTeX  PDF