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Abstract— Robust object grasping under uncertainty is an
essential capability of service robots. Many existing approaches
rely on far-field sensors, such as cameras, to compute a
grasp pose and perform open-loop grasp after placing gripper
under the pose. This often fails as a result of sensing or
environment uncertainty. This paper presents a principled,
general and efficient approach to adaptive grasping, using
both tactile and visual sensing as feedback. We first model
adaptive grasping as a partially observable Markov decision
process (POMDP), which handles uncertainty naturally. We
solve the POMDP for sampled objects from a set, in order to
generate data for learning. Finally, we train a grasp policy,
represented as a deep recurrent neural network (RNN), in
simulation through imitation learning. By combining model-
based POMDP planning and imitation learning, the proposed
approach achieves robustness under uncertainty, generalization
over many objects, and fast execution. In particular, we show
that modeling only a small sample of objects enables us to
learn a robust strategy to grasp previously unseen objects of
varying shapes and recover from failure over multiple steps.
Experiments on the G3DB object dataset in simulation and a
smaller object set with a real robot indicate promising results.

I. INTRODUCTION

Robots in any modern e-commerce warehouse need to
process thousands of orders every day. To finish their task,
such robots should pick objects of various shapes and sizes
quickly and reliably from a shelf amid action and perception
uncertainty. Most state of the art solutions (see Sec. II) for
autonomous grasping do open loop grasp execution which
is fast but does not work well amid action and perception
uncertainty. They mainly focus on computing a grasp pose
from raw sensor data (generally RGBD point cloud).

A grasp pose is a 6 DOF pose of the robot hand and
it’s fingers’ configurations such that when the robot hand is
placed in that pose and the fingers are closed, it is able to
grasp the object successfully. From the grasp pose, a pre-
grasp pose is computed which is a slightly translated pose
from the grasp pose so that a collision free motion plan
exists. Then open loop grasp execution is done by placing
the gripper in pre-grasp pose, moving forward to reach the
grasp pose and closing fingers to pick the object.

Amid uncertainty, computed grasp pose is often inaccurate
due to noisy sensors and algorithmic errors. Even for a
correct grasp pose, grasp execution can fail due to robot
control and calibration errors. For example, gripper may push
the object away while moving forward and close without the
object inside it. It might overshoot and not grasp the object
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in case of thin objects and might not be able to go into the
gap for complex objects like a headphone (See open loop
grasp executions in video1). To prevent and recover from
such failures during grasp execution, we should compute
closed loop plans conditioned on sensor feedback like touch,
vision and proprioception. One of the naive closed loop plan
is to repeatedly recompute grasp pose and do open loop
grasp execution until success. In this solution, same error
in grasp pose estimation and action outcomes may keep on
recurring. A robust grasp execution plan should be able to
decide the best action by taking into account the uncertainty
in state estimation and robot control. It should be able to
take information gathering actions when uncertainty is high
and improve its next action by using the action observation
history while reaching the goal.

Existing robust grasp execution approaches either use hand
designed controllers or learning or model-based planning. It
is difficult to provide a general solution which is suitable for
different objects using hand designed controllers. However
both learning based and planning based approaches have the
potential to provide a general solution for fast and robust
grasp execution under uncertainty. While learning based
approaches can provide a fast policy, they require large
amount of appropriate data and feature representation to deal
with uncertainty. Planning based approaches can deal with
uncertainty but are very slow and require a system model for
a general solution. As we will see in section II, when learning
or planning is used separately, it is difficult to fulfill these
requirements. This leads to solutions that are applicable to
very specific scenarios like grasping only a fixed known set
of objects or simple shapes or following suboptimal plans
like gripper always going back for re-grasping.

In this work, we combine model-based planning and
learning approaches, to provide a general and principled ap-
proach for fast and robust grasp execution under uncertainty.
We first model a simpler problem with known objects as
a partially observable markov decision process (POMDP)
(a principled way for planning under uncertainty). Then
we use the plans containing information gathering actions
generated by POMDP solver as training data to train a deep
recurrent neural network policy for general, fast and robust
autonomous grasping.

For model-based planning, one of the the main challenges
is to define a system model which is very hard to specify
for complex shaped objects. In our approach, we sample a
few objects from distribution of objects and create a model
for only sampled objects through simulation. Using practical
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POMDP solvers like DESPOT [1], we can solve this simpler
problem of grasping an unknown object selected from a
set of known objects under pose and shape uncertainty.
Theoretically, if there exists a small policy to successfully
grasp the sampled objects under uncertainty, then we should
be able to generalize to whole distribution of objects by
planning only for a sample of objects (See [2]).

Another key issue with model-based planning under uncer-
tainty is that solving a POMDP is computationally intensive
which leads to slow decision making. To make decisions
quickly, we need to avoid doing forward search at every
step and make decisions based on previous experience. For
this we do imitation learning. In this way we don’t need the
complete model for all the objects and can still get a fast and
general policy for robust grasp execution under uncertainty.

For learning, one of the main challenge is gathering
large amount of relevant data. To learn a policy which can
succeed under uncertainty, along with large amount of data,
another key consideration is that the data should contain
enough examples of information gathering actions when
uncertainty is high. This is difficult to provide through human
demonstrations as humans do not perceive the environment
like robots. We are able to generate this large amount of
relevant data by using POMDP solver traces from grasping
of the sampled objects under pose and shape uncertainty.

Using this approach, by modeling only 50 household
object instances in simulation, we are able to learn au-
tonomously many long term plans for robust grasp execution
which generalize well to objects of varying shapes and sizes
that are not modeled. We grasp 100 object instances that are
not modeled in simulation and 5 real world objects that are
representative of different types of shapes present in modeled
objects but are not modeled.

II. RELATED WORK

State of the the art grasping approaches are data-driven
([3], [4], [5], [6], [7]) and aim to compute a grasp pose with
high probability of success using vision feedback. Some ([8],
[5]) even try to overcome action uncertainty and calibration
errors by servoing the gripper to the computed grasp pose.
However once the grasp pose with a high probability of
success rate is computed and robot has been servoed to the
computed pose, grasp execution is still open loop i.e. gripper
is moved towards the object and closed to pick the object.
Thus grasp failures due to slipping of object out of gripper
or accidental hitting of object due to slight misplacements
cannot be prevented. In fact they are often reported as main
reasons of grasp failure in these works. Such failures have
high probability especially when only depth or rgb images
are used for grasp pose calculation and servoing, as there
can be error in perception of distance from object. Thin
objects and objects requiring gripper to move in a gap further
increase probability of such failures. Side grasping provides
additional challenges as gripper can move the object away
by accidentally hitting it. Our work is meant to be used
alongside these approaches to prevent and recover from such

failures by incorporating additional touch and proprioception
feedback during grasp execution.

Existing closed loop grasp execution approaches that take
into account sensor feedback like touch, proprioception, op-
tical sensors force feedback etc. during grasp execution can
be divided into 3 categories: 1) Hand designed controllers;
2) Learning; 3) Model-based planning. Hand designed con-
trollers ([9], [10], [11], [12], [13], [14]) use a predefined
action plan which is dependent on sensor feedback after
each action. Thus these approaches are limited in the variety
of plans they can employ to prevent or recover from grasp
failure. They either do small adjustments near the grasp pose
or follow fixed plans to do re-grasping like moving back by
a predefined distance or in a predefined direction. We want
to obtain such plans autonomously in a principled manner
through model-based POMDP planning.

Existing model-based planning approaches work for very
simple cases like grasping a specific set of known objects
[15] or grasping in a very simple simulated environment [16]
due to difficulty in obtaining system model and time required
for solving a POMDP. We can scale to large number of novel
objects by using sampling and imitation learning.

Existing learning approaches ([17], [18], [19], [20], [21],
[22]) mainly use labeled data which maps various near field
sensor inputs to grasp success probability to learn simple
grasp pose adjustments given sensor feedback. They are ei-
ther applicable only when gripper is already touching object
([17], [18], [19]) or follow suboptimal plans like gripper
always trying to re-grasp object ([20], [21], [22]). Such poli-
cies increase the risk of accidentally hitting the object during
grasp execution. They have been either demonstrated only on
a small set of objects or have low success rate ([22]). These
issues can be avoided by learning long term plans which
optimally do a trade off between information gathering and
completing the task. Generating data for learning such plans
is extremely hard. [23] demonstrate successful trajectories
for grasping and then learn dynamic motion primitives for
robustness. However they are also restricted to small set of
objects due to requirement of human demonstration.

III. OUR APPROACH

A. Problem Statement

We want to compute a policy, which provides optimal
actions based on our current belief of object pose, object
shape and gripper pose for successful grasping. We are
provided with a pre-grasp pose for gripper initially and touch
sensor feedback, vision feedback, gripper pose and finger
joint angles during each action. We first model a simpler
problem with known set of objects as a POMDP, a principled
way to do planning under uncertainty. In this work, we
assume we do side grasping of objects with pose uncertainty
in only x (forward/backward) and y (left/right) axis.

B. POMDP modeling

A POMDP is defined by a tuple < S,A,Z,T,O,R > where
S is the state space, A is the action space, Z is the observa-
tion space. State transition function T (s,a,s′) = p(s′|s,a) is



probability of next state s′ when action a is taken in state
s. Observation function O(s′,a,z) = p(z|s′,a) is probability
of observing z in state s′ reached by performing action a.
R(s,a) is the immediate reward obtained on taking action a
in state s. Uncertainty is modeled by maintaining a belief b,
which is probability distribution over S. Solution to POMDP
is a policy π : B→ A which maps belief b ∈ B to an action
a ∈ A such that the expected total discounted reward Vπ(b)
defined below is maximized.

Vπ(b) = E

(
∞

∑
t=0

γ
tR(st ,π(bt))|b0 = b

)
where γ is the discount factor and b0 is the initial belief.
1) State: To model grasp execution as a POMDP, we

define state space S as < Ob jid ,Ob jpose,Gpose,F > where
Ob jid is object id and determines object shape. Ob jpose
and Gpose are object and gripper 2D position w.r.t world
frame and F represents the finger joint angles. For out robot,
F =< J1,J2 >, where Ji represents each finger’s joint angle.

2) Action: To keep computation requirements minimal,
we assume that gripper only moves forward/backward (x-
axis) or sideways (y-axis) to grasp objects from side. Thus we
define action space A as a set of 11 actions: Move until touch
forward/backward/left/right by 1cm or 8cm, close gripper,
open gripper, pick object. To grasp from any direction, the
action space can be extended by including actions like move
up/down or rotate the gripper. This will only increase the
resources required for modeling objects but will not change
our approach fundamentally. We use one small movement
action (1cm) and one large movement action (8cm) in each
direction as small movement actions help in gripper pose
adjustment around object and large movement actions reduce
the length of optimal action sequence which shortens the
search horizon for POMDP solver. 8cm is defined based
on our gripper workspace size of 20cm× 16cm and can be
increased for larger workspace.

3) Observation: We assume that Gpose and F are fully
observable due to accurate proprioception. However Ob jid
and Ob jpose are unknown and can only be estimated by
sensor observations. If touch sensors are reliable and provide
rich information, touch feedback alone should be sufficient to
estimate object pose and shape. However our touch sensors
are very noisy and are present only on gripper finger tips
which often leads to pushing of object out of workspace.
Therefore we use an additional binary vision observation
which detects object movement based on the difference in
point cloud of object at the start of an action and during
an action. Thus Z is defined as < Gpose,F,T,OM >. T =<
T1,T2 >, where Ti is the touch sensor value of finger i. OM
is 1 if object moved.

4) State Transition And Observation Model: Obtaining a
state transition and observation model is in general a hard
problem. However since we need to obtain this model for
only a small set of known objects, we can record the next
state and observation values for different state action pairs
using simulation. To explain this process, we first define
grasp pose and object grasp pose.

a) Grasp Pose: Since we are considering uncertainty
in only x any y axis, we calculate the grasp pose for side
grasp using a simple heuristic for simulation. First we fix
the height gz of the gripper. Then we find the closest point
(cx,cy,cz) on the object in x axis, at the height of gripper i.e.
(|gz− cz| <= 0.005). This point is our grasp pose. Ideally
we should place the gripper at (cx− 0.13,cy,gz). However
because of gripper workspace restrictions, we always place
gripper at same starting position (gx,gy,gz) and place the
object at a position (ox,oy,oz) (we call this position object
grasp pose) such that (cx,cy,cz) = (gx+0.13,gy,gz). Thus in
our experiments, grasp pose defines position of object instead
of position of gripper (See Fig. 1).

We place each object at its object grasp pose and gripper
at 320 positions (each position is 1 cm apart in 20cm×16cm
gripper workspace) around it and perform all the actions to
generate < s,a,s′,z> tuples which are stored in a table. From
each location, we also perform 2 action sequences consisting
of one of the 8 move actions as first action and one of
the 11 actions as second action. Thus we perform 11*(1+8)
= 99 actions from each location. We need to perform 2
action sequences while collecting data because when initial
position of gripper is colliding with object, simulation shows
unrealistic behavior. Therefore we cannot record data on
those positions. By performing 2 step actions, we are able
to move gripper close to object through first action.

Using this data, we can generate s′ approximately accord-
ing to p(s′|s̃,a) by matching s̃ with s of stored < s,a,s′,z >
tuples. For fast matching, we discretize states in a 2d grid
with 1cm resolution based on (x,y) coordinates of the relative
position of gripper w.r.t object for each action. Thus each
bin consists of the < s,a,s′,z > tuples whose s,a has been
mapped to that bin. We find a matching tuple for s̃,a by
probabilistically selecting a tuple from the bin s̃,a gets
mapped to. The probability of a tuple < s,a,s′,z > matching
to s̃,a is ∝ ( 1

2 )
αd(s,s̃|a) where α is a parameter defined as 4

and d(s, s̃|a) is the distance between states s and s̃ defined
as follows for different actions:
Pick: Euclidean distance between gripper finger joint angles
Close/Open: Euclidean distance between the relative 2d
positon of gripper w.r.t object
Move in x: Euclidean distance with relative gripper position
in y axis and absolute gripper position in x-axis
Move in y: Euclidean distance with relative gripper position
in x axis and absolute gripper position in y-axis

Fig. 1: Real And Simulated Robot Setup. Kinect Sensor is
also used but not shown.



We use absolute position for one dimension in move action
so that we can do better matching near gripper workspace
boundaries. For pick action, we match the finger joint angles
as they are important for correctly picking an object.

Similarly, we can generate z according to p(z|s′,a) by
matching s̃′ with the s′ of tuples < s,a,s′,z >. As gripper
position is fully observable, we only need T and OM
observations for which gripper workspace is not an issue.
Therefore for all actions we take the euclidean distance
between the relative 2d position of gripper w.r.t object to
find the nearest neighbor in the bin.

If there is no data point in the bin, we assume that object
is very far from the gripper as we cover all the positions
close to object during data collection. Therefore we use a
default function which moves gripper as much as intended
and gives a default observation of no touch and no movement
detection for move and open actions. For close action, default
function closes the gripper fully and gives a default touch
sensor observation determined by taking average of touch
sensor observations when gripper is fully closed. For pick
action, default function outputs an unsuccessful pick.

5) Reward: We give a reward of -1 for each step to en-
courage small trajectories. If touch is detected, an additional
reward of +0.5 is given to encourage gripper to remain
near object. A large positive reward of 100 is given for
successfully picking object. A large negative reward of -10
is given if the object falls or is pushed out of workspace. To
narrow the search, we give penalty of -100 on performing
move actions after a close gripper action. To avoid actions
which lead to no state change, we give penalty of -100 for
actions like open action when the gripper is already open or
move actions that result in no movement when the gripper is
at the workspace boundary. This is important for searching
for best action efficiently.

6) Belief And Belief Update: Since our state space is
continuous, we represent our belief as a finite set of state
instances (particles) weighted according to the probability of
them being true state. For initial belief b0, we sample each
object with equal probability and for a given object, calcu-
late the object pose using uniform distribution with ±4cm
uncertainty around the object grasp pose. Since gripper is
assumed to be placed at the grasp pose, we fix gripper’s
initial position without loss of generality.

p(z|s,a) is obtained by comparing the true observation z
with the observation z̃ generated for the given particle using
our stored data. It is defined as ∝ ( 1

2 )
αd(z,z̃) where α is a

parameter defined as 5 and d(z, z̃) is the distance between
observation z and z̃. We can assume that observations from
different sensors are independent of each other given the
state. Therefore we calculate the distance between gripper
2D position d(Gpose, G̃pose), joint angles d(F, F̃), touch sen-
sor observation d(T, T̃ ) and object movement d(OM, ˜OM)
individually and define d(z, z̃) as their weighted sum.
d1 = d(Gpose, G̃pose) is the Euclidean distance between 2D
gripper positions. To avoid over fitting to collected data, we
set d1 = 0 if d1 < 5mm and d1 = 2 if d1 > 1.5cm
d2 = d(F, F̃) is 0 if gripper is open (determined by action

which led to the state) or closed without object (determined
by action which led to the state and whether the finger joint
values are above a manually defined threshold) according to
both F and F̃ . d(F, F̃) is 2 if gripper is closed with object
according to F and closed without object according to F̃ or
vice versa. If gripper is closed with object according to both
F and F̃ , then d(F, F̃) = |J1−J̃1|+|J2−J̃2|

2 .
d3 = d(T, T̃ ) = |T1−T̃1|+|T2−T̃2|

2 .
d4 = d(OM, ˜OM) = |OM− ˜OM|
d(z, z̃) = w1∗d1+w2∗d2+w3∗d3+w4∗d4

w1+w2+w3+w4
We set w1 = 2, w2 = 1, w3 = 4, w4 = 2. If action is close
gripper, we set w2 to 2 and w4 to 1.

We can use such a manually designed distance to compare
two observations for generating observation probability as
belief update only needs approximate probability values
which can give particles close to true state higher weight.

C. Imitation Learning

To learn a policy from the execution traces provided
by DESPOT after solving the above POMDP for grasping
known set of objects amid pose and shape uncertainty, we use
2-layered deep recurrent neural network (RNN). RNNs have
an inductive bias that works well with sequence data and may
potentially generalize to whole object distribution better than
the policy tree used by DESPOT. Each RNN layer consists of
128 hidden units. The input to RNN consists of gripper pose,
gripper finger joint values, touch sensor observation, vision
movement observation and observed object class vector.
Output is 11 dimensional for 11 actions.

IV. EXPERIMENTS

A. Robot Setup

We conducted experiments using Kinova Mico Arm. The
gripper consists of 2 under-actuated fingers which adapt
to the shape of object while grasping. Therefore we can
grasp a variety of objects using side grasp. Each finger is
controlled by one joint and has one numatac touch sensor
on its tip which provides real number touch values (See Fig.
1). We make it binary by setting a threshold for POMDP
planning. For OM, depth point cloud is obtained from Kinect
sensor. We compare the depth point cloud above gripper
height to filter out gripper movement and detect only object
movement. For simulations, we use vrep simulator ([24]).
We are able to map real numatac sensor touch values to vrep
touch sensor values through a linear transformation. Gripper
can move using cartesian control in a 20cm×16cm area.

As we are interested in seeing how we can prevent/recover
from grasp failure when calculated grasp pose can be in-
correct, we make the process of how the grasp pose was
calculated and how the error was generated irrelevant. We
place the object relative to gripper such that gripper is at the
correct grasp pose (correct grasp pose is easy to determine
for simulation and manually determined for real objects for
sake of experiments) and then move the object in a small
range (±4cm in our work) to simulate the error in grasp
pose. Thus without loss of generality, we can fix the initial



position of robot at (x=0,y=0.07), with (0,0) at the bottom
right corner of gripper workspace. Then we calculate the
true position of object relative to it as explained in section
III-B.4.a.

B. Baseline

As we place gripper at true grasp pose w.r.t object, our
baseline is to move gripper forward by a fixed distance,
close the gripper and pick the object. Since the amount of
distance to move forward can be different for various objects,
we use 7 baseline policies which differ in the amount of
forward movement (ranging from 10cm to 16cm). For each
object instance, we choose the best performing baseline.
Thus grasping success rate for baseline is the average of
the success rate of best performing baseline associated with
each different object instance.

C. Experiments with Household objects in Simulation

We use G3DB object dataset ([25]) to simulate household
objects in vrep simulator. It has 92 types of objects, out
of which 41 were side graspable and had stable simulation.
Each object type can have many instances. We have 150
object instances from 41 object types for experiments.

Ideally we can consider all 150 household objects as one
object class. However keeping all objects in one class makes
policy complex as many information gathering actions need
to be performed for differentiating between different objects
like cylindrical objects or objects with 2 lobes. For estimating
grasp stability before pick, we depend on only joint angle
feedback. This is not sufficient to determine whether object
is inside the gripper or not for very thin objects like cup
handles or wine glasses. With a richer sensor like force
feedback or touch with larger area or vision, it should be
possible to put all objects in one class. In the current work,
we divide the 150 object instances into 5 object classes: 1)
Power grasp objects; 2) Pinch grasp objects; 3) Cup With
handles; 4) Objects with thin sticks but support on top; 5)
Objects with 2 lobes. Fig. 2b shows various objects in object
classes. To automatically determine object class, we train a
convolutional neural network which maps depth image to
object class. Thus the object class observation is a vector
with size as number of object classes and element i giving
the probability of object belonging to class i. To add the prior
about object class, the first action is always to get the object
class observation. For belief update, we define p(z|s,a) as the
dot product of observed object class vector and true object
class vector (which is 1 for true object class, 0 otherwise).

We randomly sample approximately 1/3 of objects (min-
imum 3) from each object class to form a set of known
objects (See Fig. 2a). We grasp these modeled objects placed
at different positions generated by uniform distribution with
±4cm interval in x and y axis around object grasp pose for
pose uncertainty using DESPOT. Then we train a 2 layer
deep RNN to learn a fast and robust grasping policy from
the generated action observation sequences.

For experiments, we place the object to be grasped at 81
different positions in x and y axis which form a grid of ±4cm

(a) 50 Training Objects (b) Object Classes

(c) 100 Test Objects

Fig. 2: b) Top: Power grasp objects; Middle Left: 2 lobe
object; Middle Right: Cups With Handle; Bottom Left: Pinch
grasp objects; Bottom Right: Objects with support on top

around object grasp pose. Then we try to grasp the object
using baselines, despot and the learned policy. Table I shows
the grasping success rate for the 50 modeled object instances
(train) and 100 object instances that were not modeled (test)
(Fig. 2c). We can see that we are able to significantly improve
the grasping success rate of baseline for both training and
test set of objects. Learned policy generalizes slightly better
than the despot policy while takes only 0.9-1.5ms to compute
next action as compared to 5 seconds taken by DESPOT.

D. Grasping With Real Robot

Next we conduct experiments on real robot. We choose
5 side graspable objects representative of different shapes
in training objects as shown in Fig. 4. As in the simulator,
we fix the true grasp pose for objects at 13cm from the
fixed gripper position and then place the object at ±4cm in
x and y axis around object grasp pose (9 positions) (See
Fig. 1). Then we try to grasp it using baselines, DESPOT
and learned policy. DESPOT and learned policy are the same
as the one obtained by modeling 50 simulation objects. We
provide object class observation manually for real objects as
our object class classifier was trained on simulator data. If
we have enough real objects, we can train such a classifier
on real objects also and automatically determine object class.
Table II shows the grasping success rate for each of the 5
objects. We can see that we are able to significantly improve
the grasping success rate of the baseline for real objects also.

E. Analysis

We see some interesting policies that are generated by
DESPOT and learned by deep RNN. For power grasp objects,



TABLE I: Grasp success rate in simulator

Object Baseline Despot Learned
Train (50 objects) 65.5% 82.1% 83.4%
Test (100 objects) 65.6% 71.7% 73.8%

Fig. 3: Simulation Object
Types Not Modelled Fig. 4: Real Objects

policy is to move forward as much as possible before
closing the gripper and re-grasp if object slips. If touch is
detected, then gripper tries to get around object and avoids
hitting it. (See learned policy grasp execution for bottle in
video1). These simple policies generalize well for different
objects. For example the object types shown in Fig. 3 have
no instances in training objects. But they are still grasped
successfully by the DESPOT and learned policy.

For pinch grasp objects, the policy is to localize object
by moving left and right after moving forward and then
move backward so that object comes in gripper fingers (See
learned policy grasp execution for kitchen towel stand in
video1). To move backward, learned policy takes two to
three consecutive move back actions which shows that it has
learned a long term plan. This policy should also generalize
well for pinch grasps. Though in real arm experiments, we
get many failures for kitchen towel stand object because
joint angles of real arm are not able to differentiate between
gripper closed with or without object for thin objects. So
we have to rely on very noisy touch sensor feedback to
determine this. With a better joint angle feedback we should
be able to differentiate between gripper closed with or
without object and this policy should work well.

For objects with 2 lobes like headphone also, policy is to
localize the object by moving left and right and then try to
move into the gap by slightly pushing the object. (See learned
policy grasp execution for headphone in video1). Here also
we see long term plans being learned when gripper tries to
push object slightly thrice, when not able to move into the
gap during execution 2 in video1.

For objects with support on top, policy is to simply move
forward by 16cm and close the gripper which gives almost
100% success rate. Ideally these objects should be merged
with pinch grasp objects but because of their extremely thin
sticks they have to be kept separate. For cup with handles,
learned policy is very similar to power grasp objects. This
policy works because when the cup is grasped from the main
part instead of handle, it slips and handle comes in gripper
fingers resulting in successful grasp. This is also seen in real
robot experiments with cup with handle.

The main reasons of grasp failures in our work are:
1) Objects going out of reach of gripper when they are
shifted forward as this puts them close to gripper workspace
boundary. This is the main reason of failure for bottle and

TABLE II: Grasp success rate with real arm

Object Baseline Despot Learned
Lemon tea bottle 66.7% 77.8% 88.9%

Kitchen towel stand 33.3% 88.9% 66.7%
Headphone 66.7% 88.9% 88.9%
Wine glass 100% 100% 100%

Cup With Handle 100% 88.9% 100%
Total 73.3% 88.9% 88.9%

headphone in real arm experiments. 2) Objects with small
height and tapering shape or thin objects have grasping
failure in simulator even when grasp is correct. 3) Joint
angles are weak indicators of grasp stability. This leads to
many failures specially for pinch grasp objects. 4) Objects
like cups with handles rotate and the movement is not
detected. This behavior is currently not modeled. While 1)
can be avoided with larger robot workspace, 2) is just the
artifact of simulator and 3) can be avoided by using force
feedback. For 4) object rotation needs to be modeled which
requires richer vision observation. This is difficult with state
of the art POMDP solvers as it requires dealing with large
observation spaces. We leave it for future work.

V. CONCLUSION AND FUTURE WORK
We showed that we can make autonomous grasping more

accurate under uncertainty by modeling grasp execution as
a POMDP for only a small sample of objects and then
using the execution traces of POMDP to train a very fast
policy for robust grasp execution under uncertainty which
also generalizes to other objects of the object class that were
not modeled. The learned policy takes 0.9-1.5 ms to compute
the next action2 which is comparable to open loop execution
while planner policy takes 5 seconds to compute the next
action although the success rate of learned policy is slightly
better than the planner policy and significantly better than
the open loop execution.

There are various ways in which we can further improve
the grasping success rate. One way is to increase the variety
of actions that can be performed. If we can move the gripper
in z-axis then we can better deal with objects of small height.
Similarly if we can rotate gripper then we can better deal
with objects that rotate with gripper movement. Another
option is to incorporate a richer vision feedback. This can
make our policy simpler and can be helpful in modeling
more complex object movements like rotation and tilting.
This can also alleviate the need for specifying object classes
and enable us to model uncertainty in object movement
due to unknown object properties like center of mass and
friction for successful grasping. Currently we do not vary
these properties as they cannot be determined by touch,
proprioception and basic vision feedback. Another interesting
direction is to improve the learned policy online through user
feedback if it does some undesired actions.
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